Math 132 Course Review

1.	Integ	gral Basics 3 Questions
	(a)	Left and right hand sums. Find a left/right hand with 5 subdivisions.
	(b)	Riemann Sums. Which integral is represented by the given Riemann sum?
	` ′	Find a limit of Riemann sums for the given integral.
	(c)	FTC, parts 1 and 2. Find the derivative of an integral function.
	()	Find a definite integral.
2.	Integ	gration Techniques 5 Questions Compute an integral using the techniques below.
		Substitution
		Parts
	(c)	Trig
	(d)	Trig Sub
	(e)	Partial Fractions
	Q: H	low do you recognize when to use each of these techniques?
3.	Integ	gration Applications 5 Questions
	(a)	Areas Compute a given area.
	(b)	Improper integrals (Type I and II) Compute an improper integral.
	(c)	Volumes: Washers, Shells Set up and compute volume.
		Average Value Find average value.
	` /	Arc Length Find arc length.
	` ′	Surface Area Find surface area.
	. ,	
4.	Serie	s 7 Questions
	(a)	Sequences and Series, partial sums. Find the limit of a given sequence.
	(b)	Geometric Series Find the sum of a geometric series.
	(c)	Telescoping Series Find the sum of a telescoping series.
	(d)	Convergence tests: Integral, Comparison, Limit Comparison, Alternating Series Test, Ratio Test, Root Test
		Given a series, does it converge or diverge?
		Maximum error (remainder) for an alternating series?
	(e)	Power Series and Taylor Series. Radius and Interval of Convergence?
		Given a function, find its power series.
		Given a power series, find its function.
		Given a series, can you recognize it as a power series evaluated at a given point?
		Can you use the table of derivatives to find a power series?

Can you use the table of derivatives to find a power series? (f) Frequently used power series: $\frac{1}{1-x}$, $\ln(1+x)$, $\arctan x$, e^x , $\sin x$, $\cos x$.

Highlighted Questions

- 1. Review #52 Approximate $\int_0^3 x^2 dx$ by using the midpoint rule and 3 subdivisions. Answer: 35/4
- 2. Review #53 Let $g(x) = \int_2^{1/x} \arctan t \ dt$. Find g'(x). Answer: $(-1/x^2)\arctan(1/x)$
- 3. Review #2 Find $\int_0^{\sqrt{3}} \frac{4x}{\sqrt{x^2+1}} dx$ Answer: Substitution: 4
- 4. Review #7 Find $\int_0^1 x \sin(2x) dx$. Answer: Parts: $\frac{1}{4} \sin 2 \frac{1}{2} \cos 2$
- Review #12 Find $\int_0^\infty \frac{x}{(x^2+2)^2} dx$ Answer: Improper: 1/4
- **Answer:** Arc length: 14/3 Review #8 Find the length of $y = (2/3)x^{3/2}$, $0 \le x \le 3$.
- Review #56 $\ln 2 = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \cdots$ How many terms must be added to obtain a partial sum within $\frac{1}{100}$ of $\ln 2$? **Answer:** 99 terms.
- Review #1-e Converge or Diverge: $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ Answer: p-series with $p = \pi$. Converges.
- 9. Review #15 $x \cos(x/2) = \sum_{n=0}^{\infty} a_n x^n$. Find a_5 . Answer: 1/384
- 10. Review #16 $\int \arctan(x^2) dx = C + \sum_{n=1}^{\infty} a_n x^n$, find a_7 . Answer: -1/21
- 11. Review #17 $\sin x = \sum_{n=0}^{\infty} a_n (x \pi/3)^n$. Find a_3 . Answer: -1/12
- 12. Review #27 Find a function represented by: $1+3x+9x^2+27x^3+81x^4+\cdots$ Answer: 1/(1-3x)
- Review #38 Find the interval of convergence for $\sum_{n=0}^{\infty} \frac{(-1)^n (x+3)^n}{4^n \sqrt{n+1}}$ Answer: R=4. I=(-7,1]
- 14. Review #37 Let $f(x) = \frac{1}{72}x^3e^{2x^2}$. Find $f^{(7)}(0)$. Answer: Use power series: 140.

 15. Find a series for $\sinh x = \frac{1}{2}(e^x e^{-x})$. Answer: $\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$
- 16. Find a series for 2^x , centered at x = 1. Answer: $2^x = \sum_{n=0}^{\infty} \frac{2(\ln 2)^n (x-1)^n}{n!}$
- 17. Find a series for $x\cos(x^3)$ and use it to approximate $\int_0^1 x\cos(x^3) dx$. How accurate is the 5th partial sum?
 - **Answer:** 5th partial sum: $1 \frac{1}{8 \cdot 2!} \frac{1}{14 \cdot 4!} \frac{1}{20 \cdot 6!} \frac{1}{26 \cdot 8!}$. Next term: $\frac{1}{32 \cdot 10!} = 8.6 \times 10^{-9}$.