Math 132 - October 9, 2017 (Exam 2 Review) Solutions

Exam 2: 5.4, 6.1, 6.2, 6.3, 6.5, 7.1, 7.2

- 1. Calculate $\int_{1}^{2} \frac{e^{x}}{1-e^{x}} dx$
Solution: $\ln(e-1) \ln(e^{2}-1)$
- 2. Let u = 2t 1 and rewrite the integral in the variable u.

$$\int_{2}^{3} t\sqrt{2t-1} dt$$
Solution: $\int_{3}^{5} \frac{1}{4} (u^{3/2} + u^{1/2}) dy$
3. Find $\int \frac{dx}{x \ln x} = \ln(\ln x) + C$
4. Compute $\int \frac{x}{x^{2}-3} dx = \frac{1}{2} \ln(x^{2}-3) + C$
5. Compute $\int_{0}^{\pi/3} \sin x \cos^{4} x dx = \frac{31}{160}$
6. Compute $\int_{0}^{\sqrt{\ln 3}} 3x e^{-x^{2}} dx = 1$
7. Compute $\int_{0}^{1} \sqrt{x^{2}-x^{4}} dx = \frac{1}{3}$
8. Evaluate the definite integral $\int_{0}^{2} \frac{dx}{\sqrt{2x+5}} = 3 - \sqrt{5}$
9. Find $\int \cot(x) \ln(\sin x) dx = \frac{1}{2} (\ln(\sin x))^{2} + C$
10. Compute the area under $y = \sqrt{x+1}$ from $x = 0$ to $x = 3$.
Solution: $\frac{14}{3}$

Find the volume of the solid obtained by rotating the region R about the x-axis. Solution: 13π

12. Find
$$\int_0^{\pi/2} e^{\sin x} \cos x \, dx = e - 1$$

13. Find
$$\int_{1}^{2} x\sqrt{x-1} \, dx$$
 Solution: $\frac{16}{15}$

- 14. Find the area enclosed by $y = x^2$ and y = x. Solution: $\frac{1}{6}$
- 15. Find the area enclosed by $y^2 = x + 6$ and y = x. Solution: $20 + \frac{5}{6}$
- 16. Find the area enclosed by $y = \frac{\ln x}{x}$ and $y = \frac{(\ln x)^2}{x}$. Solution: $\frac{1}{6}$
- 17. Find the volume of the solid whose base is the disc centered at the origin with radius one, whose cross sections perpendicular to the x-axis are squares.

Solution: $\frac{16}{3}$

18. Find the volume of the solid whose base is the region $|x| + |y| \le 1$ and whose vertical cross sections perpendicular to the y axis are semicircles (with diameter along the base).

Solution: $\frac{\pi}{3}$

- 19. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = x^3$, y = 8 and x = 0. Solution: $96\pi/5$
- 20. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and $y = \sqrt{x}$ about the x-axis. Solution: $3\pi/10$
- 21. Find the volume of the solid obtained by rotating the region bounded by y = sin x, y = cos x, x = 0, x = π/4 about the horizontal line y = 3.
 Solution: π(6√2 ¹³/₂)
- 22. Find the volume of the solid obtained by rotating the region bounded by $y = 4 x^2$, x = 0, and x = 1 about the vertical line x = 2.

Solution: $9\pi + \frac{13\pi}{6}$

23.
$$\int_0^3 \frac{1}{\sqrt{x}} dx = 2\sqrt{3}$$

24. Find the average value of $|x^2 - 2|$ on [0, 2]. Solution: $(2/3)(2\sqrt{2} - 1)$

25. Find
$$\int_{1}^{e^{b}} \frac{\cos(\ln t)}{t} dt = \sin b$$

26.
$$\int_0^1 t e^{\pi t} dt = (\pi e^{\pi} - e^{\pi} + 1)/(\pi^2)$$

- 27. Find the average value of $y = x^2$ over [1,3] Solution: $\frac{13}{3}$
- 28. Find the number c for which \sqrt{c} is the average value of \sqrt{x} over the interval [0,2]. Solution: C = 8/9
- 29. Find the average value of e^x on $[0, \ln 2]$ Solution: $1/\ln 2$

30. Find
$$\int_{1}^{2} \log_2 x \, dx = 2 - 1/\ln 2$$

31. $\int_0^{\pi/2} x \sin x \, dx = 1$

32.
$$\int_0^1 x^2 e^{-x} dx = 2 - \frac{5}{e}$$

- 33. $16 \int_{1}^{e} x^{3} \ln x \, dx = 3e^{4} + 1$
- 34. $\int_0^{\pi/2} \sin^2 x \cos^3 x \, dx = 2/15$
- 35. Let R be region above x-axis and below $y = (\sin x)/x$, $0 \le x \le \pi/2$. Rotate R about y axis and find volume. Solution: 2π
- 36. Suppose $f(x) = x^2$ and that f(7) is equal to the average value of f on the interval [2, b]. What is b? Solution: 11

37.
$$\int_0^{\pi/2} t \cos t \, dt = (\pi - 2)/2$$

10

38.
$$\int_0^{\pi/4} \sqrt{\sec^2 x - 1} \, dx = \ln \sqrt{2}$$

- 39. $\int \arcsin x \, dx = x \arcsin x + \sqrt{1 x^2} + C$ Note: $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$
- 40. Let R be the region in the first quadrant enclosed by $y = x^2 + 2$, y = 6 and x = 0. Rotate R about the x axis. Using shell method, find the integral representing the volume. Solution: $2\pi \int_2^6 y \sqrt{y-2} \, dy$

41. Suppose we know f(1) = 0, f(2) = 1, $\int_1^2 f(x) dx = -2$. Use integration by parts to find $\int_1^2 x f'(x) dx$ Solution: 4

- 42. $\int_0^{\pi/4} \tan^3 x \, dx = (1 \ln 2)/2$
- 43. Find $\int_0^{\pi/4} \tan^2 x \sec^4 x \, dx = 8/15$
- 44. Find $\int_0^{\pi} \sin^2 x \, dx = \pi/2$
- 45. Find $\int_0^{\pi} \cos^2 x \, dx = \pi/2$
- 46. Find $\int_0^{\pi} \sin^4 x \, \cos^2 x \, dx = \pi/16$
- 47. Find $\int_0^{\pi/3} \sec^2 \theta \ d\theta = \sqrt{3}$
- 48. Let $f(x) = x^2 + 1$. Find the point c in [1, 7] such that f(c) is the average value of f on [1, 7]. Solution: $c = \sqrt{19}$
- 49. Find $\int_{1}^{2} \log_2(x) dx$ Solution: $2 1/\ln 2$ Solution: Use change of base $\log_a x = \frac{\ln x}{\ln a}$.
- 50. Find $\int_0^{\pi/2} x \sin x \, dx = 1$
- 51. Find $\int \sin^3 x \, dx = \frac{1}{3} \cos^3 x \cos x + C$.