Section 11.9: Power Series as Functions

- Section 11.8: Radius and Interval of Convergence
- Operations on Power Series: Substitution, Addition, Multiplication, Division (difficult), Differentiation, Integration

Warm-up Problems

1. Clicker Given the sum below:

$$
1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+\cdots=\frac{1}{1-x}
$$

What is the sum:

$$
1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+x^{8}+\cdots
$$

(a) $\frac{1}{1-x}$
(b) $\frac{1}{1+x}$
(c) $\frac{1}{1-x^{2}}$
(d) $\frac{1}{1+x^{2}}$
(e) Diverges

Class Problems

For the problems below, work hard to get the correct representation of the series. To do this, write out the series term-by-term and then try to find the pattern.
2. (Method: Substitution)

Find a series for $\frac{1}{1+x^{2}}$
3. Clicker Find a power series for $f(x)=\frac{x^{3}}{4+x}$
(a) $\sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} x^{n}$
(b) $\sum_{n=0}^{\infty} 4^{n} x^{n}$
(c) $\sum_{n=0}^{\infty}(-4)^{n+1} x^{n+3}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} x^{n+3}$
(e) There is no series for $f(x)$.
4. Reindex the solution from the previous question so that the power of x is x^{n}.
5. (Method: Differentiation)

Find a series for $\frac{1}{(1-x)^{3}}$
6. (Method: Integration. Note $\int \frac{1}{1+x^{2}} d x=\arctan x+C$)

Find a series for $\frac{1}{1+x^{2}}$
7. Use your previous series to find a series for $\arctan (1)=\pi / 4$
8. Find a series for $\frac{1}{1+x^{10}}$ and use your series to approximate $\int_{0}^{0.25} \frac{1}{1+x^{10}} d x$
9. (Method: multiplication)

Use multiplication of power series to find a series for $\frac{1}{1-x} \cdot \frac{1}{1-x}$.
(This is definitely a pain, but just distribute the terms out.)

$$
\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)=
$$

10. (Method: Long Division-Challenging and worth avoiding whenever possible)

Use long division of power series to find a series for $\frac{\ln (1+x)}{\ln (1-x)}$
Note: $\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\frac{1}{5} x^{5}-\cdots$
and: $\ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\frac{1}{5} x^{5}-\cdots$
11. Find power series for the following functions (you figure out the method(s) to use!)
(a) $\frac{1}{4+3 x}=$
(b) $\frac{x}{(1+x)^{2}}=$
(c) $\frac{1+2 x}{1-x}=$

