Math 132 - October 31, 2016

Solutions
Ideas from Section 11.2: Series
e An infinite sum is definited as the limits of the partial mmm... dis ca ndy is sweet!
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Warm-up Problems

1. Use long division to simplify
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a) We can’t conclude anything about this question until after completes its investigation of this instructor an
Wi ’t lud. thi bout thi ti til after WU letes its i tigati f this instruct d
this course. But that investigation won’t be complete until January, way after the class is over. Thus, I have no
way to answer this or any other question in this class.
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Class Problems

2. Use Geometric series to compute the infinite sum:
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3. Use Geometric series to compute the partial sums

(2)” @/3)- (- 2/3)Y
3

2

3

1—(2/3)

4
@Y
4 n—1
() (1 @3
“’;() =)

T2\" O (2/3)(1-(2/3)Y)
<C>,§(3> R O]

4. Use telescoping series to compute the series.
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